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Fast ignition inertial confinement fusion relies on rapidly heating the compressed fuel to ignition using a
laser-generated electron beam. The current required far exceeds the Alfvén limit, so it can only propagate while
the plasma provides a nearly coincident return current. The resistive decay of the return current is shown to be
too rapid for the originally proposed scheme to work. Possible solutions to this problem are to increase the
mean energy of the beam, to heat the fuel to a higher temperature by lowering the beam radius and duration,
to use multiple beams, and to use an annular beam. Considering the laser wavelength required shows that
increasing the mean energy and number of beams are the most practical solutions.
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The fast ignition scheme for inertial confinement fusion
proposed by Tabaket al. [1] relies on rapidly heating the
core of the compressed fuel to ignition using a laser-
generated electron beam. This has advantages over the con-
ventional scheme of a spherically converging shock wave in
that it could achieve the higher gain of the isochoric model
over the isobaric model[2], that it does not require a high
degree of symmetry, and that it could have a higher effi-
ciency. Alfvén[3] noted that the main limiting factor on the
propagation of an electron beam in a conductor is the self-
generated magnetic field, which acts to turn the electrons
back towards the source, limiting the current to a value of the
order of

JA =
4p

em0
p, s1d

known as the Alfvén limit, wheree is the electron charge and
p is the electron momentum. The current required for fast
ignition is given by

JFI =
eKt

kKltb
, s2d

whereKt is the total electron energy,kKl is the mean electron
energy, andtb is the beam duration. Fast ignition requires a
minimum energy for ignition, a maximum mean fast electron
energy, to ensure that the electrons stop in the core, and a
maximum beam duration, to avoid expansion of the core,
therefore it requires a minimum current. Tabaket al. esti-
mated these parameters to be 3 kJ, 1 MeV, and 10 ps, re-
spectively, for a deuterium-tritium(DT) fuel density of 3
3105 kg m−3 s300 g cm−3d, giving a minimum ignition cur-
rent of 0.3 GA. More detailed calculations by Atzeni[2] put
the ignition energy at 18 kJ and the pulse duration at 20 ps,
increasing this value to 0.9 GA. The Alfvén limit[Eq. (1)]
for 1 MeV electrons is 47.5 kA, a factor of 1.93104 lower
than this, indicating that the scheme is unworkable. How-
ever, this is a limit on the net current, not the forward cur-

rent, and as the electron beam enters the plasma the initial
charge separation will draw an equal, almost coincident, re-
turn current from the plasma, giving a net current very much
lower than the forward current. However, the return current
is in turn opposed by the effect of collisions and separates
from the beam current due to their mutual repulsion, giving a
net current that increases in time. This means that a current
that exceeds the Alfvén limit can only propagate for a limited
time. In this Rapid Communication an upper limit for this
magnetic inhibition time is derived, which corrects a previ-
ous derivation[4], and it is used to reconsider the beam
requirements for fast ignition.

The simplest model for the plasma return current is the
basic Ohm’s lawE=hj p, whereE is the electric field,j p is
the plasma current density, andh is the plasma resistivity.
The use of this equation in the context of laser-generated
electron transport is discussed in some detail by Glinsky[5].
It assumes that the dynamics of the plasma electrons is domi-
nated by collisions. This is an adequate approximation pro-
vided that the plasma electron density is much greater than
that of the beam. This is certainly the case in the compressed
fuel, but it may not be the case near the region where the
electrons are generated, which will be at the laser critical
density. As the beam current is much higher than the limiting
value the beam current densityj must be almost exactly bal-
anced by the plasma current density, so we can usej p<−j .
Substituting the resulting expression for the electric field into
Faraday’s law gives the growth rate of the magnetic field as

] B

] t
= = 3 hj . s3d

Assuming a constant resistivity and a constant current den-
sity, we can estimate the magnetic field from Eq.(3) to be
B,h jt /R, where R is the beam radius for a cylindrical
beam. The net currentJnet is 2pRB/m0 and the beam current
J is pR2j , giving

Jnet, 2
t

tD
J, s4d
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tD =
m0R

2

h
s5d

is normally referred to as the magnetic diffusion time, but as
diffusion of the magnetic field has not been included here,
due to the assumption of approximate current balance, I will
refer to it as the current decay time, to avoid confusion. The
assumption of approximate current balance is only valid for
times much less than this, as is obvious from Eq.(4), which
predicts a net current greater than the beam current for
t. tD /2. If magnetic diffusion is included, the net current
tends to the beam current. The Alfvén limit thus applies for
times greater than the current decay time. This is much lower
than the times relevant to the propagation of cosmic rays, the
application Alfvén considered, and to most cases of interest
in beam physics, but it is typically greater than the duration
of laser-generated electron beams, so we must consider the
time dependent problem. This calculation only takes into ac-
count the resistive decay of the plasma return current, the
mutual repulsion between the beam and plasma currents has
not been taken into account, so Eq.(5) gives an upper limit
on the current decay time. It is thus an adequate model for
determining if magnetic inhibition will be important. In prac-
tice, the effect of the mutual repulsion on the plasma elec-
trons is only likely to be significant near the region where the
electrons are generated, as the beam and plasma densities
could be comparable. The effect on the beam electrons is to
cause pinching, otherwise known as magnetic focusing,
which does not affect these calculations because it is the final
beam radius that is of interest. It only affects the laser con-
ditions required to achieve it. The time at which the net
current given by Eq.(4) exceeds the Alfvén limit gives the
magnetic inhibition time

tI ,
tD

2J/JA
. s6d

The maximum radius given by Atzeni’s ignition power and
intensity thresholds is 20mm, and the Spitzer resistivity at
the final, ignition temperatureskT/ed of approximately
10 keV is of the order of 1 nV m, giving a current decay
time [Eq. (5)] of 50.3ms, which is much greater than the
beam duration, justifying the assumption of current balance.
We estimatedJ/JA to be at least 1.93104, giving tI / tb
,0.65, so the minimum ignition current cannot be main-
tained for the required time. The parameters originally sug-
gested by Tabaket al., for which the radius is 10mm, are
actually worse in this respect, givingtI / tb,0.24.

The reader may not be convinced by such a crude treat-
ment, so I will now give a more rigorous one. For this I will
use the Bennet current profile[6]

jB =
j0

s1 + r2/R2d2 , s7d

which has a total currentJ given by pR2j0. This is chosen
above all for of its mathematical simplicity. Its most impor-
tant feature is not that it is an equilibrium solution, but that it
peaks on-axis and falls with radius, features that would be
expected of a “typical” beam. I will discuss the effect of

varying the current profile later. The magnetic field[Eq. (3)]
for a constant resistivity and a constant current density given
by Eq. (7) is

B =
4r/R

s1 + r2/R2d3

h j0t

R
. s8d

This gives a net current density from=3B /m0 of

jnet= 8
t

tD

1 − 2r2/R2

s1 + r2/R2d4 j0. s9d

Thus there is a net forward current up to a radius ofR/Î2,
and a net return current at larger radii. The net forward cur-
rent is

Jnet=
32

27

t

tD
J, s10d

which is close to the simple estimate of Eq.(4). An absolute
upper limit on the current can be obtained by calculating
when the energy per unit length in the magnetic field would
equal that of the particles which generated it[4]. The latter is
given byJnetkKl /ev, wherekKl is the mean forward energy
of the electrons andv is the propagation velocity of the
beam. To determine the absolute upper limit we should as-
sume that all of the electrons are traveling forwards, so that
kKl is the mean electron energy andv the mean electron
velocity. This equals the energy per unit length in the mag-
netic field given by Eq.(8) when

tI =
20

27

4p

em0

kKl
v

1

J
tD. s11d

This differs from the result of Ref.[4] because there the total
energy in the forward current was used, rather than that in
the net forward current, which is the energy actually avail-
able to generate the magnetic field. That this is the correct
approach is clear when we consider the limit as being that for
the current density given by Eq.(9), rather than that for the
Bennet profile[Eq. (7)]. For a strongly relativistic, mono-
energetic beamkKl /v<p, so Eq.(11) can be written astI
< tD / s1.35J/JAd, which is only a factor of about 1.5 greater
than the simple estimate of Eq.(6). Repeating these calcula-
tions for a Gaussian current profilej0 exps−r2/R2d gives a
magnetic inhibition time a factor of exps0.5d /1.35<1.22
lower than Eq.(11). This is a result of the sharper fall off of
the Gaussian profile, which contains 1−exps−1d<0.632 of
its total current within the radiusR, compared to 0.5 for the
Bennet profile. The ratio of the inhibition time[Eq. (11)] to
the beam duration is given by

fp ;
tI
tb

< 3.103 10−8c

v
S kKl

e
D2R2

Kt

1

h
, s12d

which I will refer to as the propagation factor. For Atzeni’s
ignition parametersfp<0.73, which confirms the previous
estimate.

Thus we can conclude that only a fraction of the beam
will enter the compressed fuel before the magnetic field
grows sufficiently to start turning electrons back towards the
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source of the beam. We would expect the majority of these
electrons to spread out in the corona, rather than return to the
core. Such behavior has been seen in particle-in-cell model-
ing of similar situations[7]. Numerical solutions of a model
similar to that used here have shown that energy deposition
is considerably reduced by magnetic inhibition if electrons
returned to the source are removed, and concentrated near
the source if they are reflected[8]. Therefore more energy
must be put into the beam, but this increases the current,
lowering the magnetic inhibition time. Clearly we require the
propagation factor to be greater than one for an ignition
beam. Before considering how it could be increased, we
should consider by how much it must, realistically, be in-
creased by, because in obtaining the value of 0.73 we were
looking to obtain an upper limit, so that we could be certain
that magnetic inhibition is important. To be certain that it
will not be important we must take the opposite approach.
The magnetic field turns electrons back before they lose all
of their forward current in generating it[4], so we can count
on an actual propagation factor half that of Eq.(12). The
Bennet profile contains only half the total current within the
radiusR, and for more sharply peaked profiles the inhibition
time is lower, so we can count on at least another factor of 2.
The total electron energy used was the energy that must be
uniformly deposited in a cylindrical region of the core, the
actual value must be higher than this to take account of loses
in reaching the core, of scattering of electrons out of the
region, and of the wide energy spectra of laser-generated
electron beams, which contain electrons with energies too
high and too low to produce useful heating. We can thus
count on at least doubling the total energy. The use of a
lower value for the resistivity may appear to be unreason-
able, but it has been shown that the final resistivity does give
a good estimate of the final magnetic field when there is a
large increase in the temperature[9]. Taking all of these fac-
tors into account, we see that, to be on the safe side, we
should consider a propagation factor four times lower than
that of Eq.(12) and a total energy of 36 kJ, so we need to
increase it 11 times. The propagation factor is independent of
the beam duration. It might also be expected to be indepen-
dent of the fuel densityr, but the density scaling of Atzeni’s
ignition thresholds givesKt /R

2~r0.15 and hencefp~r−0.15.
He attributes this departure from the expected scaling to the
fall in ln L with density. As this also appears in the electron
stopping power the maximum mean electron energy will also
fall with density, further lowering the propagation factor. In
spite of this, we would still expect the density scaling of the
propagation factor to be relatively insignificant. In order to
achieve ignition we must have a minimum energy per area
Kt /R

2, so the propagation factor can be increased by increas-
ing the mean energy and by lowering the resistivity. Increas-
ing the mean energy increases the distance over which the
energy is deposited. Atzeni found the ignition thresholds to
be weakly affected by changing this distance by a factor of 2
either way, but he only considered distances much less than
the diameter of the core. I will assume that this distance can
be doubled with no increase in the total energy, but that all
energy deposited beyond this distance is wasted. The colli-
sional stopping distances of an electron varies approxi-
mately ass~K2/g, whereK is the electron’s kinetic energy

and g is the Lorentz factor, given by 1+K /mc2. Assuming
that the distance over which the energy is deposited is given
by the stopping distance at the mean electron energy, and
using the strongly relativistic approximations~ kKl, we ob-
tain fp~ kKl and Kt~ kKl, for increases in the mean energy
above 2 MeV, so the desired increase could be achieved by
increasing the mean energy to 5.5 MeV and the total energy
to 99 kJ. The resistivity can be lowered by increasing the
temperatureT to which the fuel is heated, as the Spitzer
resistivity h~T−3/2. Ignoring thermal conduction and alpha
particle heating we haveT~KtR

−2s−1, wheres is again taken
to be the collisional stopping distance at the mean electron
energy. The temperature can thus be increased by increasing
the total energy, reducing the radius, and reducing the mean
energy. For the total energy we havefp~Kt

1/2, making this is
a very inefficient solution. For the radius we havefp~1/R,
so the desired increase could be achieved by reducing the
radius to 1.8mm. For the mean energy we havefp
~ kKl−3/2g5/2s1+gd−1/2, so the desired increase could be
achieved by reducing the mean energy to 50 keV, but at the
same time the temperatureskT/ed is increased to 1.4 MeV,
so this is not possible. In reducing the radius to 1.8mm the
temperature is increased to 1.2 MeV, so this must be com-
bined with an increase in the mean energy. The temperature
could also be increased by reducing the beam duration, as
this reduces cooling due to thermal conduction. Such a re-
duction is implicit in all of the above proposals. For Atzeni’s
parameters, if the energy were to be deposited instanta-
neously the temperature would be approximately doubled,
leading to an increase of approximately 2.8 times in the
propagation factor, well short of that required. The problem
could also be overcome by making more fundamental
changes to the scheme itself. The most obvious of these is to
use multiple beams, each containing a fraction of the total
energy. As a result of the limited overlap possible between
the beams, we can count on increasing the total energy re-
quired by a factor of about 4[10], so 44 beams with a total
energy of 144 kJ would be required to achieve the desired
increase by this means alone. As each beam has a radius of
20 mm they would fill practically the whole surface area of
the core, which suggests the use of spherically symmetric
irradiation. This would avoid alignment problems inherent in
this scheme, remove the inefficiencies of overlapping beams
and, in theory, remove the magnetic field. In practice, inevi-
table irregularities in the irradiation and in the compressed
fuel will lead to some magnetic field generation. This is simi-
lar to the conventional scheme, but using a spherically con-
verging heat wave instead of a shock wave. It also has simi-
larities to the coronal ignition scheme of Hain and Mulser
[11], in which ignition is triggered by a heat wave initiated at
the laser critical density. Another possibility is to use a hol-
low electron beam to increase the current limit[4]. The
Alfvén limit for an annular beam is greater than that of Eq.
(1) by a factor of approximately the radius of the annulusR
divided by its widthDR. As only a narrow annulus would be
heated thermal conduction and alpha particle heating would
have to be relied upon to heat the central region. Heat flow
out of this region would make the scheme less efficient, so to
be on the safe side I will assume that total energy has to be
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doubled to 72 kJ. To give an Alfvén limit higher than the
beam current[Eq. (2)], would requireR/DR<7.63104, giv-
ing DR=0.26 nm forR=20 mm. However, the propagation
factor could be increased sufficiently for a lower value of
R/DR because the temperature is increased, lowering the re-
sistivity. Neglecting thermal conduction,T~R/DR, which
for the Spitzer resistivityh~T−3/2 gives fp~ sR/DRd1/2, as it
is DR that determines the current decay time[Eq. (5)], notR,
so DR=41 nm could be sufficient. As this requires a tem-
perature of 2.4 MeV the mean energy would have to be in-
creased. The beam duration would also have to be reduced to
prevent cooling. As a means of lowering the resistivity this is
less efficient than simply lowering the radius.

An important factor to be taken into account when decid-
ing which solution to choose is the maximum laser wave-
lengthl required, which results from the requirements for a
minimum laser intensityI and a maximum electron energy,
which puts a maximum value onIl2. A low wavelength is
undesirable because it brings problems with laser efficiency
and focusing optics. The laser intensity required for fast ig-
nition is

IFI =
Kt

fabspR2tb
, s13d

where fabs is the fraction of the laser energy converted to
beam energy. The radiusR in Eq. (13) could be greater than
the beam radius due to magnetic pinching of the beam, how-
ever, analytical and numerical results indicate that this will
be strongly limited by the fall in resistivity resulting from the
large increase in temperature[9,12], so I will take it to be the
beam radius. The mean electron energy at relativistic inten-
sities has been found to be approximately given by the pon-

deromotive potential, or maximum oscillation energy of an
electron in the laser field. In the strongly relativistic limit,
Il2@1010 W, this is approximately 4.77sIl2d1/2 eV, giving

lFI < 0.37
kKlRfabs

1/2tb
1/2

eKt
1/2 . s14d

For kKl /e=1 MeV, R=20 mm, fabs=0.5, which is about the
highest value that can be reasonably expected,tb=20 ps, and
Kt=36 kJ, we havelFI <120 nm. Reducing this would be
undesirable, so the methods of choice for increasing the
propagation factor are increasing the mean energy and the
number of beams, as these increase the maximum wave-
length, whereas the other methods reduce it considerably.
The proposed increases in the mean energy and number of
beams both givelFI <0.40mm, a perfectly practical value.
It should also be taken into account that magnetic inhibition
could still occur due to the mutual repulsion between the
beam and return currents. This requires a different treatment,
but it is obvious that lowering the beam current will also
reduce this effect. This again favors increases in the mean
energy and the number of beams.

In conclusion, it has been shown that the resistive decay
of the return current will prevent the propagation of the elec-
tron beam envisaged for fast ignition. Increasing the mean
energy, increasing the temperature by lowering the beam ra-
dius and duration, using multiple beams, and using an annu-
lar beam have been shown to be possible solutions to this
problem. Taking into account the laser wavelength required
shows that increasing the mean energy and number of beams
are the most practical solutions. In the terminology used by
Atzeni, these considerations reduce the “ignition window,”
requiring the ideal conditions to be reconsidered.
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